Home > marsbar > @mardo_5 > private > pr_spm_reml.m

pr_spm_reml

PURPOSE ^

ReML estimation of covariance components from y*y'

SYNOPSIS ^

function [C,h,Ph,F] = pr_spm_reml(YY,X,Q,N,OPT);

DESCRIPTION ^

 ReML estimation of covariance components from y*y'
 FORMAT [C,h,Ph,F] = pr_spm_reml(YY,X,Q,N,[OPT]);

 YY  - (m x m) sample covariance matrix Y*Y'  {Y = (m x N) data matrix}
 X   - (m x p) design matrix
 Q   - {1 x q} covariance components
 N   - number of samples

 OPT = 1 : log-normal hyper-parameterisation (with hyperpriors)

 C   - (m x m) estimated errors = h(1)*Q{1} + h(2)*Q{2} + ...
 h   - (q x 1) ReML hyperparameters h
 Ph  - (q x q) conditional precision of h [or log(h), if OPT(1)]

 F   - [-ve] free energy F = log evidence = p(Y|X,Q) = ReML objective

 Performs a Fisher-Scoring ascent on F to find ReML variance parameter
 estimates.
__________________________________________________________________________
 Copyright (C) 2005 Wellcome Department of Imaging Neuroscience

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [C,h,Ph,F] = pr_spm_reml(YY,X,Q,N,OPT);
0002 % ReML estimation of covariance components from y*y'
0003 % FORMAT [C,h,Ph,F] = pr_spm_reml(YY,X,Q,N,[OPT]);
0004 %
0005 % YY  - (m x m) sample covariance matrix Y*Y'  {Y = (m x N) data matrix}
0006 % X   - (m x p) design matrix
0007 % Q   - {1 x q} covariance components
0008 % N   - number of samples
0009 %
0010 % OPT = 1 : log-normal hyper-parameterisation (with hyperpriors)
0011 %
0012 % C   - (m x m) estimated errors = h(1)*Q{1} + h(2)*Q{2} + ...
0013 % h   - (q x 1) ReML hyperparameters h
0014 % Ph  - (q x q) conditional precision of h [or log(h), if OPT(1)]
0015 %
0016 % F   - [-ve] free energy F = log evidence = p(Y|X,Q) = ReML objective
0017 %
0018 % Performs a Fisher-Scoring ascent on F to find ReML variance parameter
0019 % estimates.
0020 %__________________________________________________________________________
0021 % Copyright (C) 2005 Wellcome Department of Imaging Neuroscience
0022 
0023 % John Ashburner & Karl Friston
0024 % $Id: spm_reml.m 456 2006-02-22 18:46:29Z karl $
0025 
0026 % assume a single sample if not specified
0027 %--------------------------------------------------------------------------
0028 try
0029     N;
0030 catch
0031     N  = 1;
0032 end
0033 
0034 % assume OPT = [0 0]
0035 %--------------------------------------------------------------------------
0036 try
0037     OPT;
0038 catch
0039     OPT = 0;
0040 end
0041 
0042 % ortho-normalise X
0043 %--------------------------------------------------------------------------
0044 if isempty(X)
0045     X = sparse(length(Q{1}),1);
0046 end
0047 X     = orth(full(X));
0048 [n p] = size(X);
0049 
0050 % initialise h
0051 %--------------------------------------------------------------------------
0052 m     = length(Q);
0053 h     = zeros(m,1);
0054 dh    = zeros(m,1);
0055 dFdh  = zeros(m,1);
0056 dFdhh = zeros(m,m);
0057 
0058 
0059 % initialise and specify hyperpriors
0060 %--------------------------------------------------------------------------
0061 if OPT
0062     hP  = eye(m,m)/32;
0063     hE  = h - 32;
0064     for i = 1:m
0065         h(i) = -log(normest(Q{i}));
0066     end
0067 else
0068     hE  = zeros(m,1);
0069     hP  = zeros(m,m);
0070     for i = 1:m
0071         h(i) = any(diag(Q{i}));
0072     end
0073 end
0074 
0075 
0076 % ReML (EM/VB)
0077 %--------------------------------------------------------------------------
0078 for k = 1:64
0079 
0080     % compute current estimate of covariance
0081     %----------------------------------------------------------------------
0082     C     = sparse(n,n);
0083     for i = 1:m
0084         if OPT
0085             C = C + Q{i}*exp(h(i));
0086         else
0087             C = C + Q{i}*h(i);
0088         end
0089     end
0090     iC    = inv(C);
0091 
0092     % E-step: conditional covariance cov(B|y) {Cq}
0093     %======================================================================
0094     iCX   = iC*X;
0095     Cq    = pinv(X'*iCX);
0096     XCXiC = X*Cq*iCX';
0097 
0098     % M-step: ReML estimate of hyperparameters
0099     %======================================================================
0100 
0101     % Gradient dF/dh (first derivatives)
0102     %----------------------------------------------------------------------
0103     P     = iC - iC*XCXiC;
0104     U     = speye(n) - P*YY/N;
0105     for i = 1:m
0106 
0107         % dF/dh = -trace(dF/diC*iC*Q{i}*iC)
0108         %------------------------------------------------------------------
0109         PQ{i}     = P*Q{i};
0110         if OPT
0111             PQ{i} = PQ{i}*exp(h(i));
0112         end
0113         dFdh(i)   = -trace(PQ{i}*U)*N/2;
0114 
0115     end
0116 
0117     % Expected curvature E{dF/dhh} (second derivatives)
0118     %----------------------------------------------------------------------
0119     for i = 1:m
0120         for j = i:m
0121 
0122             % dF/dhh = -trace{P*Q{i}*P*Q{j}}
0123             %--------------------------------------------------------------
0124             dFdhh(i,j) = -trace(PQ{i}*PQ{j})*N/2;
0125             dFdhh(j,i) =  dFdhh(i,j);
0126 
0127         end
0128     end
0129 
0130     % add hyperpriors
0131     %----------------------------------------------------------------------
0132     dFdh  = dFdh  - hP*(h - hE);
0133     dFdhh = dFdhh - hP;
0134     
0135     % Fisher scoring: update dh = -inv(ddF/dhh)*dF/dh
0136     %----------------------------------------------------------------------
0137     Ph    = -dFdhh;
0138     dh    = -pinv(dFdhh)*dFdh;
0139 
0140     % preclude numerical overflow
0141     %----------------------------------------------------------------------
0142     if OPT
0143         dh = min(dh, 8);
0144         dh = max(dh,-8);
0145     end
0146     h     = h + dh;
0147     
0148     % Convergence (1% change in log-evidence)
0149     %======================================================================
0150     w     = dFdh'*dh;
0151     fprintf('%-30s: %i %30s%e\n','  ReML Iteration',k,'...',full(w));
0152     if w < 1e-2, break, end
0153 
0154 end
0155 
0156 % log evidence = ln p(y|X,Q) = ReML objective = F = trace(R'*iC*R*YY)/2 ...
0157 %--------------------------------------------------------------------------
0158 if nargout > 3
0159 
0160     F = - trace(C*P*YY*P)/2 ...
0161         - N*n*log(2*pi)/2 ...
0162         - N*pr_spm_logdet(C)/2 ...
0163         + N*pr_spm_logdet(Cq)/2 ...
0164         -   pr_spm_logdet(Ph)/2 ...
0165         +   pr_spm_logdet(hP)/2;
0166 end
0167 
0168 % return exp(h) if log-normal hyperpriors
0169 %--------------------------------------------------------------------------
0170 if OPT
0171     h  = exp(h);
0172 end
0173     

Generated on Wed 11-May-2022 16:26:09 by m2html © 2003-2019